
PCI to Dual UARTs or Printer Port Chip CH351

Datasheet (II): Parallel/ Printer port Version: 1A <u>http://wch.cn</u>

1. Package

Parallel/ Printer port

Refer to Datasheet (I) CH351DS1.PDF for the application instructions and pins diagrams of dual UARTs.

2. Pin Out

2.1. Power line

Pin No.	Pin Name	Туре	Pin Description
17,53	VCC	Power	Power supply voltage input
52	GND	Power	Ground

2.2. PCI Bus Signal Line

Pin No.	Pin Name	Туре	Pin Description				
50	RST	Input	System reset signal line, active low				
51	CLK	Input	System clock signal line, active at the rising edge				
54-61, 64,1-7, 15-16, 18-23, 25-32	AD31~AD0	Tri-status output and input	Address and bi-directional data multiplexed signal line				
62,8, 14,24	CBE3~CBE0	Input	Bus command and byte enable multiplexed signal line				
13	PAR	Tri-status and bi-direction	Odd-even parity signal line				

63	IDSEL	Input	Initialize device select signal line, active high		
9	FRAME	Input	Frame cycle start signal line, active low		
10	TRDY	Tri-status output	Target device ready signal line, active low		
11	DEVSEL	Tri-status output	Target device select signal line, active low		
12	INTA	Open-drain output	INTA interrupt request signal line, active low		

2.3. Printer Port Signal Line

Pin No.	Pin Name	Туре	Pin Description			
41-48	D7~D0	Tri-status and	8-bit parallel data output and input, built-in			
41-40	D/PD0	bi-direction	pull-up, connect to DATA7~DATA0			
33	STB	Output	Data strobe output, active low, connect to STROBE			
34	AFD	Output	Automatic line feed output, active low, connect to			
74	AID	Output	AUTO-FEED			
35	INIT	Output	Initialize printer, active low, connect to INIT			
36	SIN	Output	Select printer, active low, connect to SELECT-IN			
49	ERR	Input	Printer error, active low, built-in pull-up, connect to			
49		R Input	ERROR or FAULT			
40	SELT	Input	Printer online, active high, built-in pull-up, connect			
40	SELI	mput	to SELECT or SELT			
39	PE	DE Lacut	Printer paper empty, active high, built-in pull-up,			
39	ΓĽ	Input	connect to PEMPTY or PERROR			
38	ACK	ACK Input	Printer data receives response, active at the rising			
58	ACK	mput	edge, built-in pull-up, connect to ACK			
37	BUSY	Input	Printer busy, active high, built-in pull-up, connect			
57	BUSY	mput	to BUSY			

3. Register

For the basic conventions of register, the description of PCI configuration space and bit description of configuration register, please refer to Datasheet (I).

Parallel port of CH351 is compatible with SPP standard printer port with enhanced. The register bits marked in gray in the table are enhanced functions. The actual address of parallel port register is I/O base address 1 adds the offset address in the table. Parallel port of CH351 mainly has four operating modes: SPP (including Nibble, Byte and PS/2), EPP and ECP. ALL in the table indicates all modes, ADV indicates EPP and ECP, RO indicates that register is read-only, WO indicates that register is write-only and R/W indicates that the register is readable and writable.

Address	Mode	R/W	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	SPP	RO	PIR	D7IN	D6IN	D5IN	D4IN	D3IN	D2IN	D1IN	D0IN
0	ADV	RO	PIR	IBD7	IBD6	IBD5	IBD4	IBD3	IBD2	IBD1	IBD0
0	ALL	WO	PDR	D7OUT	D6OUT	D5OUT	D4OUT	D3OUT	D2OUT	DIOUT	D0OUT
1	SPP	RO	PSR						!INTFLAG	1	1
1	EPP	RO	PSR	!BUSY	ACK	PE	SELT	ERR	1	1	!EPPREQ
1	ECP	RO	PSR						!ECPICMD	!ECPIBF	!ECPOUT
2	ALL	R/W	PCR	1	1	DIRIN	INTEN	!SIN	INIT	!AFD	!STB
3	SPP	R/W	PXR	0	0	0	0	0	0	0	0
3	EPP	R/W	PXR	0	0	0	0	EPPADDR	MODEEPP	0	0
3	ECP	R/W	PXR	0	0	0	ECPINTF	0	0	ECPDIRIN	MODEECP

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PIR	1	1	1	1	1	1	1	1
PDR	0	0	0	0	0	0	0	0
PSR	!BUSY	ACK	PE	SELT	ERR	1	1	1
PCR	1	1	0	0	0	0	0	0
PXR	0	0	0	0	0	0	0	0

The following table shows default of parallel port register after power-on reset or PCI bus reset.

- PIR: data input register, used to input real-time data from D7-D0 pins in SPP mode. In EPP or ECP mode, the data which has been latched input /uploaded to buffer. In EPP mode, the data is latched when AFD pin or SIN pin outputs a low level; in ECP mode, the data is latched when ACK pin is at the low level, and !ECPICMD is also latched at the same time.
- PDR: data output register, used to write data to be outputted /downloaded. Writing into this register in SPP mode, and the data will be directly outputted to D7-D0 pins; writing into this register in EPP or ECP mode, and the handshake protocol of data output or data input will be automatically executed.
- PSR: status register, used to query the input pin and operate the execution status.
 - BUSY: this bit is the reverse value of the status of the input pin BUSY in SPP, EPP and ECP modes. When BUSY pin inputs a high level, this bit is 0.
 - ACK: this bit is the status of the input pin ACK in SPP, EPP and ECP modes.
 - PE: this bit is the status of the input pin PE in SPP, EPP and ECP modes.
 - SELT: this bit is the status of the input pin SELT in SPP, EPP and ECP modes.
 - ERR: this bit is the status of the input pin ERR in SPP, EPP and ECP modes.
 - !INTFLAG: this bit is the reverse value of the interrupt flag in SPP mode. When the rising edge of the ACK pin generates an interrupt flag, this bit will be automatically cleared to 0, and will be automatically set to 1 after reading PSR register.
 - !EPPREQ: this bit is the reverse value of the access operation proceeding flag in EPP mode. When writing into PDR register, this bit will be automatically cleared to 0 and attempting EPP access operation. This bit will be automatically set to 1 until the operation is completed.
 - ECPICMD: this bit is the reverse value of the command flag during reverse transmission in ECP mode. When the reverse transmission is a command, this bit is 0.
 - !ECPIBF: this bit is the reverse value of the upload buffer full flag for reverse transmission in ECP mode. When the upload buffer is full, this bit will be automatically cleared to 0, and it will be automatically set to 1 after reading PIR register.
 - !ECPOUT: this bit is the reverse value of the forward transmission operation proceeding in EPP mode. When writing into PDR register, this bit will be automatically cleared to 0 and attempting EPP forward output operation. This bit will be automatically set to 1 until the operation is completed.
- PCR: control register, used to control the output pin, transmission direction and interrupt enabling.
 - DIRIN: this bit is the tri-status output control of the bi-directional data lines D7-D0 in SPP, EPP and ECP modes. When it is cleared to 0, it means that the D7-D0 pins allow tri-status output. When it is set to 1, it means that D7-D0 pins disable tri-status output.
 - INTEN: this bit is the PCI interrupt output enabling. When it is set to 1, the output of interrupt request is allowed; when it is cleared to 0, the output of interrupt request will be disabled.
 - !SIN: bit=1, SIN pin output is valid (active low), otherwise, SIN pin output is invalid.
 - INIT: bit=1, INIT pin output is invalid, otherwise, INIT pin output is valid (active low).
 - !AFD: bit=1, AFD pin output is valid (active low), otherwise, AFD pin output is invalid.
 - !STB: bit=1, STB pin output is valid (active low), otherwise, STB pin output is invalid.

PXR: configuration register, used to set the operating mode of parallel port.

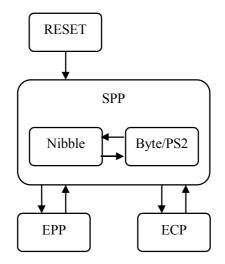
EPPADDR: this bit is the target space selection in EPP mode. When it is 1, it corresponds to the address access operation of EPP. When it is 0, it corresponds to the data access operation of EPP.

MODEEPP: bit=1, enabling EPP mode.

- ECPINTF: this bit is an interrupt flag in ECP mode. When the falling edge of ERR pin generates an interrupt flag, this bit will be automatically set to 1, and it will be automatically cleared to 0 after reading PXR register.
- ECPDIRIN: this bit is the transmission direction control in ECP mode. When it is 0, it corresponds to ECP forward transmission/output. When it is 1, it corresponds to ECP reverse transmission/input.

MODEECP: bit=1, enabling EPP mode.

4. Functional Specifications


4.1. Query and Interrupt

Parallel port of CH351 uses a PCI interrupt request pin, so after entering PCI interrupt service, firstly analyzing whether it is CH351 request interrupt and then process it. After entering the interrupt service, reading PSR or PXR register of parallel port firstly. If it is in ECP mode, checking ECPINTF flag of PXR register, otherwise, checking !INTFLAG flag of PSR register. If it is valid, it means there is an interrupt and exit it after processing, it is invalid, it means there is no interrupt and exit it directly.

If parallel port works in interrupt mode, then setting the INTEN of PCR register to allow interrupt output. SPP or EPP mode enables the interrupt request by the rising edge of ACK pin, and ECP mode enables the interrupt request by the falling edge of ERR pin. If parallel port works in the query mode, then do not to set the INTEN of PCR, and only need to query PSR and PXR registers, and analyze and process it.

4.2. Parallel Port Operation

The three operating modes of CH351 parallel port are mutually exclusive, and it is SPP mode by default. In SPP mode, it can realize an additional mode such as Nibble, Byte, PS/2, etc. PXR register can also be set to switch back and forth between SPP, EPP or ECP modes. In SPP mode, software can be used to control PCR and query PSR to realize transmission of Nibble, Byte and PS/2, etc. Refer to IEEE1284 specifications for the specific operation. The operating mode switching diagram of parallel port is as shown below.

4.3. Application Specification

Parallel port's output pins of CH351 are all CMOS level, compatible with TTL level, the input pins are compatible with CMOS land TTL level, and the input pins have built-in pull-up resistors required by the printer port, which can simplify the peripheral circuit.

The pins of CH351 in parallel mode include: bi-directional data pins, control output pins and status input pins. Except INIT pin, the bi-directional data pin and control output pin are all at high level by default. In SPP mode, all signals can be used as general-purpose IO pins, controlled and defined usage by the computer application.

In Windows and Linux OS, the drive of CH351 can be compatible with standard printer ports, so most of the original parallel port applications are completely compatible and without any modification.

CH351 can be used to expand additional high-speed RS232 serial port and parallel printer ports for computer through PCI bus.

5. Parameters

5.1. Absolute Maximum Ratings

(Critical state or exceeding maximum can cause chip to not work or even be damaged)

Name	Parameter Description	Min	Max	Unit
TA	Operating ambient temperature	-40	85	°C
TS	Storage ambient temperature	-55	125	°C
VCC	Supply voltage (VCC connects to power, GND to ground)	-0.5	6.0	V
VIO	Voltage of the input or output pins	-0.5	VCC+0.5	V

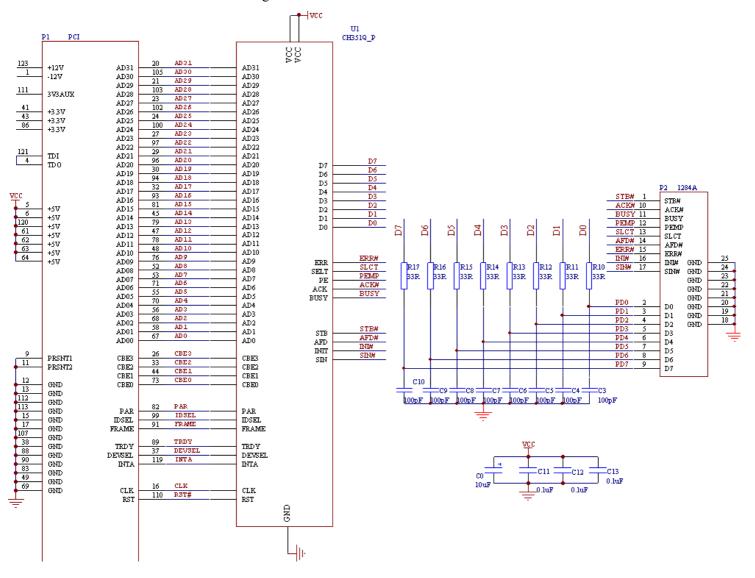
5.2. Electrical Parameters

(Test Conditions: TA=25°C, VCC=5V, exclude pins connected to PCI bus)

Name	Parameter Description	Min	Тур.	Max	Unit
VCC	Supply voltage (please refer to the attention below)	4.5	5	5.3	V
ICC	Operating supply current	1	15	50	mA
VIL	Input low voltage	-0.5		0.8	V
VIH	Input high voltage	2.0		VCC+0.5	V
VOL	Output low voltage (4mA draw current)			0.5	V
VOH	Output high voltage (1mA output current)	VCC-0.5			V
IIN	Input current of the input without pull-up			10	uA
IUP	Input current of the input with pull-up	100	250	500	uA

5.3. Timing Parameters

(Test Conditions: TA=25°C, VCC=5V, FCLK=33.3MHz)


Name	Parameter Description	Min	Тур.	Max	Unit
FCLK	CLK input frequency (main frequency of PCI bus)	0	33.3	40	MHz

6. Application

6.1. Parallel/Printer Port

This is a parallel/printer port circuit based on the CH351. P2 is the type A DB25 hole of IEEE1284 (print port connector). The series resistors R10~R17 and the parallel capacitors C3~C10 are used for impedance matching of parallel port data line, and they cannot need if the requirement is not high. Capacitors C0 and C11~C13 are used for power decoupling. C11~C13 are monolithic or high-frequency ceramic capacitors with a capacity of 0.1uF. They are connected in parallel nearby to the power pins of CH351 separately.

CH351 is a high-frequency digital circuit, so signal impedance matching shall be considered. Please refer to PCI bus specification when designing the PCB board. It is recommended that the length of PCI signal line of CH351 shall be less than 35mm and the length of clock line CLK try to be between 50mm~65mm, and it shall not be close to other signal lines. It is recommended to arrange ground or copper on both sides of CLK and on the back of PCB to reduce signal interference from the outside.

